Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(40): 37264-37273, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37841153

RESUMO

Background: Advanced glycation end products (AGEs) interaction with its receptor (RAGE) and aldosterone (Aldo) through the mineralocorticoid receptor (MR) activates Rac-1 and NF-κB independently in diabetic nephropathy (DN). However, the crosstalk of Aldo with AGEs-RAGE is still unresolved. Our study examined the impact of the AGEs-Aldo complex on renal cells and its effect on the RAGE-MR interaction. Methods and results: Glycation of human serum albumin (HSA) (40 mg/mL) with methylglyoxal (10 mM) in the presence of Aldo (100 nM) and aminoguanidine (AG) (100 nM) was performed. Glycation markers such as fructosamine and carbonyl groups and fluorescence of AGEs, pentosidine, and tryptophan followed by protein modification were measured. Renal (HEK-293T) cells were treated with the glycated HSA-Aldo (200 µg/mL) along with FPS-ZM1 and spironolactone antagonists for RAGE and Aldo, respectively, for 24 h. Glycation markers and esRAGE levels were measured. Protein and mRNA levels of RAGE, MR, Rac-1, and NF-κB were estimated. Glycation markers were enhanced with Aldo when albumin was only 14-16% glycated. AGEs-Aldo complex upregulated RAGE, MR, Rac-1 and NF-κB expressions. However, FPS-ZM1 action might have activated the RAGE-independent pathway, further elevating MR, Rac-1, and NF-κB levels. Conclusion: Our study concluded that the presence of Aldo has a significant impact on glycation. In the presence of AGEs-Aldo, RAGE-MR crosstalk exerts inflammatory responses through Rac-1 in DN. Insights into this molecular interplay are crucial for developing novel therapeutic strategies to alleviate DN in the future.

2.
Glycobiology ; 32(12): 1068-1088, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36074518

RESUMO

Glycation refers to carbonyl group condensation of the reducing sugar with the free amino group of protein, which forms Amadori products and advanced glycation end products (AGEs). These AGEs alter protein structure and function by configuring a negative charge on the positively charged arginine and lysine residues. Glycation plays a vital role in the pathogenesis of metabolic diseases, brain disorders, aging, and gut microbiome dysregulation with the aid of 3 mechanisms: (i) formation of highly reactive metabolic pathway-derived intermediates, which directly affect protein function in cells, (ii) the interaction of AGEs with its associated receptors to create oxidative stress causing the activation of transcription factor NF-κB, and (iii) production of extracellular AGEs hinders interactions between cellular and matrix molecules affecting vascular and neural genesis. Therapeutic strategies are thus required to inhibit glycation at different steps, such as blocking amino and carbonyl groups, Amadori products, AGEs-RAGE interactions, chelating transition metals, scavenging free radicals, and breaking crosslinks formed by AGEs. The present review focused on explicitly elaborating the impact of glycation-influenced molecular mechanisms in developing and treating noncommunicable diseases.


Assuntos
Produtos Finais de Glicação Avançada , Doenças não Transmissíveis , Humanos , Produtos Finais de Glicação Avançada/metabolismo , Glicosilação , Lisina/química , Arginina/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo
3.
Int J Biol Macromol ; 220: 837-851, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35987363

RESUMO

In diabetic nephropathy, hyperglycemia elevates albumin glycation and also results in increased plasma aldosterone. Both glycation and aldosterone are reported to cause oxidative stress by downregulating the NRF-2 pathway and thereby resulting in reduced levels of antioxidants and glycation detoxifying enzymes. We hypothesize that an interaction between aldosterone and glycated albumin may be responsible for amplified oxidative stress and concomitant renal cell damage. Hence, human serum albumin was glycated by methylglyoxal (MGO) in presence of aldosterone. Different structural modifications of albumin, functional modifications and aldosterone binding were analyzed. HEK-293 T cells were treated with aldosterone+glycated albumin along with inhibitors of receptors for mineralocorticoid (MR) and advanced glycation endproducts (RAGE). Cellular MGO content, antioxidant markers (nitric oxide, glutathione, catalase, superoxide dismutase, glutathione peroxidase), detoxification enzymes (aldose reductase, Glyoxalase I, II), their expression along with NRF-2 and Keap-1 were measured. Aldosterone binds to albumin with high affinity which is static and spontaneous. Cell treatment by aldosterone+glycated albumin increased intracellular MGO, MR and RAGE expression; hampered antioxidant, detoxification enzyme activities and reduced NRF-2, Keap-1 expression. Thus, the glycated albumin-aldosterone interaction and its adverse effect on renal cells were confirmed. The results will help in developing better pharmacotherapeutic strategies for diabetic nephropathy.


Assuntos
Nefropatias Diabéticas , Lactoilglutationa Liase , Aldeído Redutase/metabolismo , Aldosterona/sangue , Antioxidantes/metabolismo , Catalase/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Glutationa , Glutationa Peroxidase/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Células HEK293 , Humanos , Lactoilglutationa Liase/metabolismo , Óxido de Magnésio , Mineralocorticoides/metabolismo , Óxido Nítrico , Aldeído Pirúvico/farmacologia , Albumina Sérica Humana , Transdução de Sinais , Superóxido Dismutase/metabolismo , Albumina Sérica Glicada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...